Sparse spectrally arbitrary patterns

نویسندگان

  • Brydon Eastman
  • Bryan L. Shader
  • Kevin N. Vander Meulen
  • Stephen J. Kirkland
  • K. N. Vander Meulen
چکیده

We explore combinatorial matrix patterns of order n for which some matrix entries are necessarily nonzero, some entries are zero, and some are arbitrary. In particular, we are interested in when the pattern allows any monic characteristic polynomial with real coefficients, that is, when the pattern is spectrally arbitrary. We describe some order n patterns that are spectrally arbitrary. We show that each superpattern of a sparse companion matrix pattern is spectrally arbitrary. We determine all the minimal spectrally arbitrary patterns of order 2 and 3. Finally, we demonstrate that there exist spectrally arbitrary patterns for which the nilpotent-Jacobian method fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrally and inertially arbitrary sign patterns

We introduce some n-by-n sign patterns which allow for arbitrary spectrum and hence also arbitrary inertia. Consequently, we demonstrate that some known inertially arbitrary patterns are in fact spectrally arbitrary. We demonstrate that all inertially arbitrary patterns of order 3 are spectrally arbitrary and classify all spectrally arbitrary patterns of order 3. We illustrate that in general, ...

متن کامل

Refined inertially and spectrally arbitrary zero-nonzero patterns

The refined inertia of a matrix is a quadruple specifying its inertia and additionally the number of its eigenvalues equal to zero. Spectral properties, especially the refined inertias, of real matrices with a given zero-nonzero pattern are investigated. It is shown that every zero-nonzero refined inertially arbitrary pattern of order 4 or less is also spectrally arbitrary. Irreducible and redu...

متن کامل

Spectrally arbitrary star sign patterns !

An n × n sign pattern Sn is spectrally arbitrary if, for any given real monic polynomial g(x) of degree n, there is a real matrix having sign pattern Sn and characteristic polynomial g(x). All n × n star sign patterns that are spectrally arbitrary, and all minimal such patterns, are characterized. This subsequently leads to an explicit characterization of all n × n star sign patterns that are p...

متن کامل

Minimal Spectrally Arbitrary Sign Patterns

An n × n sign pattern A is spectrally arbitrary if given any self-conjugate spectrum there exists a matrix realization of A with that spectrum. If replacing any nonzero entry (or entries) of A by zero destroys this property, then A is a minimal spectrally arbitrary sign pattern. For n ≥ 3, several families of n × n spectrally arbitrary sign patterns are presented, and their minimal spectrally a...

متن کامل

Ela on Determining Minimal Spectrally

A new family of minimal spectrally arbitrary patterns is presented which allow for arbitrary spectrum by using the Nilpotent-Jacobian method introduced in [J.H. Drew, C.R. Johnson, D.D. Olesky, and P. van den Driessche. Spectrally arbitrary patterns.Lin. Alg. and Appl. 308:121137, 2000]. The novel approach here is the use of the Intermediate Value Theorem to avoid finding an explicit nilpotent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017